Pelatihan Jaringan Syaraf Tanpa Membebani

Beranda » Berita Terbaru » Pelatihan Jaringan Syaraf Tanpa Membebani

Saya baru-baru ini menemukan ide tentang pelatihan jaringan saraf tanpa beban dan telah menerapkan versi kasar ini dikombinasikan dengan pekerjaan terbaru yang telah saya lakukan di Teorema Taken (lihat postingan saya di sini, di sini dan di sini ) dan menggunakan mekanika statistik pendekatan untuk membuat data sintetis.

Menggunakan yang sederhana Oktaf fungsi di bawah dengan Kriteria Informasi Akaike sebagai tujuan minimalisasi

## Copyright (C) 2019 dekalog
## 
## This program is free software: you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
## 
## This program is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
## 
## You should have received a copy of the GNU General Public License
## along with this program.  If not, see
## .

## -*- texinfo -*- 
## @deftypefn {} {@var{J} =} wann_training_of_cyclic_embedding()
##
## @seealso{}
## @end deftypefn

## Author: dekalog 
## Created: 2019-10-26

function J = wann_training_of_cyclic_embedding( x )
global sample_features ; global sample_targets ;
epsilon = 1e-15 ; ## to ensure log() does not give out a nan

## get the parameters from input x
activation_funcs = floor( x( 1 : 5 ) ) ; ## get the activations, 1 == sigmoid, 2 == tanh, 3 == Lecun sigmoid
layer_size = floor( x( 6 : 10 ) ) ;

[ min_layer_size , ix_min ] = min( layer_size ) ;
  if( min_layer_size > 0 ) ## to be expected most of the time
    nn_depth = length( layer_size ) ;
  elseif( min_layer_size == 0 ) ## one layer has no nodes, hence limits depth of nn
    nn_depth = ix_min - 1 ;
  endif 

length_jj_loop = 25 ;
all_aic_values = zeros( length_jj_loop , 1 ) ;  
  
for jj = 1 : length_jj_loop 
  
  previous_layer_out = sample_features ;
  sum_of_k = 0 ;
    
  for ii = 1 : nn_depth
    
    new_weight_matrix = ones( size( previous_layer_out , 2 ) , layer_size( ii ) ) ./ sqrt( size( previous_layer_out , 2 ) ) ;
    sum_of_k = sum_of_k + numel( new_weight_matrix ) ;
    prior_to_activation_input = previous_layer_out * new_weight_matrix ;

    ## select the activation function 
    if( activation_funcs( ii ) == 1 ) ## sigmoid activation
      previous_layer_out = 1.0 ./ ( 1.0 .+ exp( -prior_to_activation_input ) ) ;
    elseif( activation_funcs( ii ) == 2 ) ## tanh activation
      previous_layer_out = tanh( prior_to_activation_input ) ;
    elseif( activation_funcs( ii ) == 3 ) ## lecun sigmoid activation
      previous_layer_out = sigmoid_lecun_m( prior_to_activation_input ) ;
    endif 
    
  endfor

  ## the final logistic output
  new_weight_matrix = ones( size( previous_layer_out , 2 ) , 1 ) ./ sqrt( size( previous_layer_out , 2 ) ) ;
  sum_of_k = sum_of_k + numel( new_weight_matrix ) ;
  final_output = previous_layer_out * new_weight_matrix ;
  final_output = 1.0 ./ ( 1.0 .+ exp( -final_output ) ) ;

  max_likelihood = sum( log( final_output .+ epsilon ) .* sample_targets + log( 1 .- final_output .+ epsilon ) .* ( 1 .- sample_targets ) ) ;
  
  ## get Akaike Information criteria
  all_aic_values( jj ) = 2 * sum_of_k - 2 * max_likelihood ;

endfor ## end of jj loop

J = mean( all_aic_values ) ;

endfunction

dan antarmuka Oktaf dari Perpustakaan Bayesopt Saat ini saya sedang mengulangi arsitektur yang berbeda (hingga 5 lapisan tersembunyi dalam dengan maksimal 100 node per lapisan dan menggunakan pilihan 3 aktivasi tersembunyi) untuk yang sederhana Regresi logistik model untuk memprediksi titik balik dalam berbagai rangkaian data sintetis mekanika statistik dengan hanya menggunakan fitur berdasarkan penanaman Taken.

Akan ada informasi lebih lanjut pada waktunya.

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Bidang yang harus diisi ditandai *

Penyedia Baru
binola

Broker yang
Lebih dari 2 juta bisnis
Lihat 10 Pialang Teratas

permainan

Permainan online
Lebih dari 2 juta bisnis
Lihat 10 Game Online Gratis Teratas

Game baru
Kebohongan P

$59.99 Edisi standar
28% Hemat Diskon
Lihat 10 Game Penyedia Teratas

KEPOMPONG

$24.99 Edisi standar
28% Hemat Diskon
Lihat 10 Game Penyedia Teratas

Penawaran Baru
Komisi hingga $1850 untuk pengguna aktif program afiliasi Oleh Exness

Poin Teratas © Hak Cipta 2023 | Oleh Topoin.com Media LLC.
Topoin.info adalah situs review produk, bonus, penawaran, penyedia layanan bisnis dan perusahaan terbaik dan terpercaya sepanjang masa.

Temukan lebih banyak dari Poin Teratas

Berlangganan sekarang untuk terus membaca dan mendapatkan akses ke arsip lengkap.

lanjutkan membaca