Menyerah pada Metode Runge-Kutta (untuk saat ini?)

Beranda » Berita Terbaru » Menyerah pada Metode Runge-Kutta (untuk saat ini?)

Selama beberapa minggu terakhir saya telah melihat penggunaan Metode Runge-Kutta untuk pembuatan fitur, tetapi saya telah memutuskan untuk menyerah pada hal ini untuk saat ini hanya karena saya pikir saya telah menemukan cara yang lebih baik untuk mencapai apa yang saya inginkan. Saya diberitahu tentang kemungkinan pendekatan ini oleh posting ini atas di http://dsp.stackexchange.com/ dan menindaklanjuti hal ini saya ingat bahwa beberapa tahun yang lalu saya membuat kode Filter Prediksi Linear John Ehler (kertas putihnya mungkin masih tersedia di sini) dan kode yang saya transkripsikan secara kasar diberikan di bawah ini:

 DEFUN_DLD (linearpredict, args, , "Help String")
{
octave_value retval;

 ColumnVector a = args(0).column_vector_value ();                                   // The input price                          
 ColumnVector b(a);                                                                 // This will be the output column vector returned to Octave by "retval"
 const int n = args(1).int_value();
 int lngth = 10;                                                                 
 
 double g[30];
 int zz;
 for (zz = 0; zz < 30; zz++)
     g[zz] = 0.0;

 double sigPredict[30];
 for (zz = 0; zz < 30; zz++)
     sigPredict[zz] = 0.0;

 double sigPower = 0.0;
 double mu = 0.0;
 double xBar = 0.0;
 int jj = 0;                                                          
 for (octave_idx_type ii (10); ii < a.length="" 10="" a="" average="" factor="" for="" href="https://draft.blogger.com/null" if="" ii="" jj="" lngth="" loop="" normalization="" ompute="" onvergence="" power="" sigpower="" start="" the=""> 0)
         mu = 0.25 / (sigPower * 10);

      //Compute signal estimate
      xBar = 0;
      for (jj = 1; jj <= lngth; jj++)
          xBar = xBar + a(ii - jj) * g[jj];

     //Compute gain coefficients
     for (jj = 1; jj <= lngth; jj++)
         g[jj] = g[jj] + (mu * (a(ii) - xBar) * a(ii - jj));

     //Compute signal prediction waveform
     for (jj = 0; jj <= lngth; jj++)
         sigPredict[jj] = a(ii - (10 - jj));

     //Extend signal prediction into the future
     int kk = 0;
     for (jj = lngth + 1; jj <= lngth + 5; jj++)
     {
         sigPredict[jj] = 0;

         for (kk = 1; kk <= lngth; kk++)
	     sigPredict[jj] = sigPredict[jj] + sigPredict[jj - kk] * g[kk];
     }

     b(ii) = sigPredict[lngth + n];

     }
 
retval = b;                                                                         // Assign the output column vector to the return value

return retval;                                                                       // Return the output to Octave
}

yang sangat mirip konsepnya dengan metode BurgSaya pikir beberapa penerapan metode ini menunjukkan lebih banyak harapan daripada berkonsentrasi pada penerapan Runge-Kutta saya yang naif. 

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Bidang yang harus diisi ditandai *

Penyedia Baru
binola

Broker yang
Lebih dari 2 juta bisnis
Lihat 10 Pialang Teratas

permainan

Permainan online
Lebih dari 2 juta bisnis
Lihat 10 Game Online Gratis Teratas

Game baru
Kebohongan P

$59.99 Edisi standar
28% Hemat Diskon
Lihat 10 Game Penyedia Teratas

KEPOMPONG

$24.99 Edisi standar
28% Hemat Diskon
Lihat 10 Game Penyedia Teratas

Penawaran Baru
Komisi hingga $1850 untuk pengguna aktif program afiliasi Oleh Exness

Poin Teratas © Hak Cipta 2023 | Oleh Topoin.com Media LLC.
Topoin.info adalah situs review produk, bonus, penawaran, penyedia layanan bisnis dan perusahaan terbaik dan terpercaya sepanjang masa.

Temukan lebih banyak dari Poin Teratas

Berlangganan sekarang untuk terus membaca dan mendapatkan akses ke arsip lengkap.

lanjutkan membaca